Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species.

Identifieur interne : 001B98 ( Main/Exploration ); précédent : 001B97; suivant : 001B99

Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species.

Auteurs : Cindy Martens [Belgique] ; Klaas Vandepoele ; Yves Van De Peer

Source :

RBID : pubmed:18299576

Descripteurs français

English descriptors

Abstract

The chromalveolates form a highly diverse and fascinating assemblage of organisms, ranging from obligatory parasites such as Plasmodium to free-living ciliates and algae such as kelps, diatoms, and dinoflagellates. Many of the species in this monophyletic grouping are of major medical, ecological, and economical importance. Nevertheless, their genome evolution is much less well studied than that of higher plants, animals, or fungi. In the current study, we have analyzed and compared 12 chromalveolate species for which whole-sequence information is available and provide a detailed picture on gene loss and gene gain in the different lineages. As expected, many gene loss and gain events can be directly correlated with the lifestyle and specific adaptations of the organisms studied. For instance, in the obligate intracellular Apicomplexa we observed massive loss of genes that play a role in general basic processes such as amino acid, carbohydrate, and lipid metabolism, reflecting the transition of a free-living to an obligate intracellular lifestyle. In contrast, many gene families show species-specific expansions, such as those in the plant pathogen oomycete Phytophthora that are involved in degrading the plant cell wall polysaccharides to facilitate the pathogen invasion process. In general, chromalveolates show a tremendous difference in genome structure and evolution and in the number of genes they have lost or gained either through duplication or horizontal gene transfer.

DOI: 10.1073/pnas.0712248105
PubMed: 18299576
PubMed Central: PMC2265158


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species.</title>
<author>
<name sortKey="Martens, Cindy" sort="Martens, Cindy" uniqKey="Martens C" first="Cindy" last="Martens">Cindy Martens</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vandepoele, Klaas" sort="Vandepoele, Klaas" uniqKey="Vandepoele K" first="Klaas" last="Vandepoele">Klaas Vandepoele</name>
</author>
<author>
<name sortKey="Van De Peer, Yves" sort="Van De Peer, Yves" uniqKey="Van De Peer Y" first="Yves" last="Van De Peer">Yves Van De Peer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18299576</idno>
<idno type="pmid">18299576</idno>
<idno type="doi">10.1073/pnas.0712248105</idno>
<idno type="pmc">PMC2265158</idno>
<idno type="wicri:Area/Main/Corpus">001E51</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E51</idno>
<idno type="wicri:Area/Main/Curation">001E51</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E51</idno>
<idno type="wicri:Area/Main/Exploration">001E51</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species.</title>
<author>
<name sortKey="Martens, Cindy" sort="Martens, Cindy" uniqKey="Martens C" first="Cindy" last="Martens">Cindy Martens</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent</wicri:regionArea>
<orgName type="university">Université de Gand</orgName>
<placeName>
<settlement type="city">Gand</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province de Flandre-Orientale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vandepoele, Klaas" sort="Vandepoele, Klaas" uniqKey="Vandepoele K" first="Klaas" last="Vandepoele">Klaas Vandepoele</name>
</author>
<author>
<name sortKey="Van De Peer, Yves" sort="Van De Peer, Yves" uniqKey="Van De Peer Y" first="Yves" last="Van De Peer">Yves Van De Peer</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Eukaryota (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Genome (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plasmodium (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Eucaryotes (génétique)</term>
<term>Génome (MeSH)</term>
<term>Génomique (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plasmodium (génétique)</term>
<term>Évolution biologique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Eukaryota</term>
<term>Plasmodium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Eucaryotes</term>
<term>Plasmodium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Evolution, Molecular</term>
<term>Genome</term>
<term>Genomics</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Génome</term>
<term>Génomique</term>
<term>Phylogenèse</term>
<term>Évolution biologique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The chromalveolates form a highly diverse and fascinating assemblage of organisms, ranging from obligatory parasites such as Plasmodium to free-living ciliates and algae such as kelps, diatoms, and dinoflagellates. Many of the species in this monophyletic grouping are of major medical, ecological, and economical importance. Nevertheless, their genome evolution is much less well studied than that of higher plants, animals, or fungi. In the current study, we have analyzed and compared 12 chromalveolate species for which whole-sequence information is available and provide a detailed picture on gene loss and gene gain in the different lineages. As expected, many gene loss and gain events can be directly correlated with the lifestyle and specific adaptations of the organisms studied. For instance, in the obligate intracellular Apicomplexa we observed massive loss of genes that play a role in general basic processes such as amino acid, carbohydrate, and lipid metabolism, reflecting the transition of a free-living to an obligate intracellular lifestyle. In contrast, many gene families show species-specific expansions, such as those in the plant pathogen oomycete Phytophthora that are involved in degrading the plant cell wall polysaccharides to facilitate the pathogen invasion process. In general, chromalveolates show a tremendous difference in genome structure and evolution and in the number of genes they have lost or gained either through duplication or horizontal gene transfer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18299576</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2008</Year>
<Month>Mar</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species.</ArticleTitle>
<Pagination>
<MedlinePgn>3427-32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0712248105</ELocationID>
<Abstract>
<AbstractText>The chromalveolates form a highly diverse and fascinating assemblage of organisms, ranging from obligatory parasites such as Plasmodium to free-living ciliates and algae such as kelps, diatoms, and dinoflagellates. Many of the species in this monophyletic grouping are of major medical, ecological, and economical importance. Nevertheless, their genome evolution is much less well studied than that of higher plants, animals, or fungi. In the current study, we have analyzed and compared 12 chromalveolate species for which whole-sequence information is available and provide a detailed picture on gene loss and gene gain in the different lineages. As expected, many gene loss and gain events can be directly correlated with the lifestyle and specific adaptations of the organisms studied. For instance, in the obligate intracellular Apicomplexa we observed massive loss of genes that play a role in general basic processes such as amino acid, carbohydrate, and lipid metabolism, reflecting the transition of a free-living to an obligate intracellular lifestyle. In contrast, many gene families show species-specific expansions, such as those in the plant pathogen oomycete Phytophthora that are involved in degrading the plant cell wall polysaccharides to facilitate the pathogen invasion process. In general, chromalveolates show a tremendous difference in genome structure and evolution and in the number of genes they have lost or gained either through duplication or horizontal gene transfer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martens</LastName>
<ForeName>Cindy</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vandepoele</LastName>
<ForeName>Klaas</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Van de Peer</LastName>
<ForeName>Yves</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>02</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056890" MajorTopicYN="N">Eukaryota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="Y">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010961" MajorTopicYN="N">Plasmodium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18299576</ArticleId>
<ArticleId IdType="pii">0712248105</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0712248105</ArticleId>
<ArticleId IdType="pmc">PMC2265158</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Pharmacol Ther. 1999 Feb;81(2):91-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10190581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1999;53:1-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2000 Jan-Feb;47(1):15-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10651290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2000 Jul;51(1):26-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10903370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 3;290(5493):972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2001 May;51(Pt 3):737-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11411693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 26;277(17):14910-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11827964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Jan;18(1):207-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Hematol. 2002 Mar;9(2):140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297-354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Jun;19(6):830-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Parasitol. 2002 Jul 29;107(1-2):51-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2002;56:489-520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12142486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Nov;18(11):577-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12414188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2003 Mar;38(2):250-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2003 Oct;57(4):408-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14708574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(2):R7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1095-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 14;32(12):3724-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Sep;14(9):1686-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15342554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jan 7;307(5706):82-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15644465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Mar;42(3):213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15707842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005 Mar 07;6:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 1;309(5731):131-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:309-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 8;437(7056):E3; discussion E4-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16148888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Oct;43(10):707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16784880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Sep;4(9):e286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16933976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 9;444(7116):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1348-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Apr;269(2):280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):781-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 1999 Jul-Aug;46(4):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 1989;119:197-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2695484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1992 Dec;46(6):1801-1817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28567775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Jul 15;293 ( Pt 2):305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8343109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Feb 5;259(5096):780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8430330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1996;266:418-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8743697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1997 Dec;45(6):619-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419239</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
<region>
<li>Province de Flandre-Orientale</li>
<li>Région flamande</li>
</region>
<settlement>
<li>Gand</li>
</settlement>
<orgName>
<li>Université de Gand</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Van De Peer, Yves" sort="Van De Peer, Yves" uniqKey="Van De Peer Y" first="Yves" last="Van De Peer">Yves Van De Peer</name>
<name sortKey="Vandepoele, Klaas" sort="Vandepoele, Klaas" uniqKey="Vandepoele K" first="Klaas" last="Vandepoele">Klaas Vandepoele</name>
</noCountry>
<country name="Belgique">
<region name="Région flamande">
<name sortKey="Martens, Cindy" sort="Martens, Cindy" uniqKey="Martens C" first="Cindy" last="Martens">Cindy Martens</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18299576
   |texte=   Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18299576" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024